Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Biotechnol J ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507185

RESUMEN

Building sustainable platforms to produce biofuels and specialty chemicals has become an increasingly important strategy to supplement and replace fossil fuels and petrochemical-derived products. Terpenoids are the most diverse class of natural products that have many commercial roles as specialty chemicals. Poplar is a fast growing, biomassdense bioenergy crop with many species known to produce large amounts of the hemiterpene isoprene, suggesting an inherent capacity to produce significant quantities of other terpenes. Here we aimed to engineer poplar with optimized pathways to produce squalene, a triterpene commonly used in cosmetic oils, a potential biofuel candidate, and the precursor to the further diversified classes of triterpenoids and sterols. The squalene production pathways were either re-targeted from the cytosol to plastids or co-produced with lipid droplets in the cytosol. Squalene and lipid droplet co-production appeared to be toxic, which we hypothesize to be due to disruption of adventitious root formation, suggesting a need for tissue specific production. Plastidial squalene production enabled up to 0.63 mg/g fresh weight in leaf tissue, which also resulted in reductions in isoprene emission and photosynthesis. These results were also studied through a technoeconomic analysis, providing further insight into developing poplar as a production host.

2.
Physiol Plant ; 175(6): e14095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38148184

RESUMEN

During autumn, decreasing photoperiod and temperature temporarily perturb the balance between carbon uptake and carbon demand in overwintering plants, requiring coordinated adjustments in photosynthesis and carbon allocation to re-establish homeostasis. Here we examined adjustments of photosynthesis and allocation of nonstructural carbohydrates (NSCs) following a sudden shift to short photoperiod, low temperature, and/or elevated CO2 in Pinus strobus seedlings. Seedlings were initially acclimated to 14 h photoperiod (22/15°C day/night) and ambient CO2 (400 ppm) or elevated CO2 (800 ppm). Seedlings were then shifted to 8 h photoperiod for one of three treatments: no temperature change at ambient CO2 (22/15°C, 400 ppm), low temperature at ambient CO2 (12/5°C, 400 ppm), or no temperature change at elevated CO2 (22/15°C, 800 ppm). Short photoperiod caused all seedlings to exhibit partial nighttime depletion of starch. Short photoperiod alone did not affect photosynthesis. Short photoperiod combined with low temperature caused hexose accumulation and repression of photosynthesis within 24 h, followed by a transient increase in nonphotochemical quenching (NPQ). Under long photoperiod, plants grown under elevated CO2 exhibited significantly higher NSCs and photosynthesis compared to ambient CO2 plants, but carbon uptake exceeded sink capacity, leading to elevated NPQ; carbon sink capacity was restored and NPQ relaxed within 24 h after shift to short photoperiod. Our findings indicate that P. strobus rapidly adjusts NSC allocation, not photosynthesis, to accommodate short photoperiod. However, the combination of short photoperiod and low temperature, or long photoperiod and elevated CO2 disrupts the balance between photosynthesis and carbon sink capacity, resulting in increased NPQ to alleviate excess energy.


Asunto(s)
Dióxido de Carbono , Pinus , Temperatura , Dióxido de Carbono/fisiología , Fotoperiodo , Fotosíntesis/fisiología , Plantones/fisiología , Carbono , Carbohidratos , Hojas de la Planta/fisiología
3.
Physiol Plant ; 175(5): e14006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37882274

RESUMEN

Copper (Cu) homeostasis is integral to many plant physiological processes, including lignification of plant cell walls. This link occurs through Cu's role as a cofactor in the apoplastic laccase enzymes that oxidize monolignols that then polymerize to form the hydrophobic lignin polymer, which provides rigidity and strength to the water transport system. In this study, we investigated the effect of Cu deficiency on lignin content and chemistry in poplar stems. We also examined the effect of Cu deficiency on the stiffness of stem wood and the hydraulic properties of leaves. Cu deficiency resulted in a significant reduction in lignin content, an increase in the syringyl to guaiacyl monomer ratio of stem xylem, and no change to stem modulus of elasticity. Accompanying these stem traits, Cu-deficient leaves had higher (less negative) turgor loss points and markedly stiffer mesophyll cell walls. Our results may reflect a novel response in poplar whereby structural stiffness and mechanical stability are maintained in the face of Cu deficiency and reduction in the guaiacyl lignin monomer content.


Asunto(s)
Cobre , Lignina , Cobre/análisis , Xilema , Madera , Hojas de la Planta , Pared Celular/química
4.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37666966

RESUMEN

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Asunto(s)
Lignina , Madera , Biomasa , Celulosa
5.
Plant Direct ; 7(2): e482, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36733272

RESUMEN

The hemicelluloses comprise a group of matrix glycans that interact with cellulose microfibrils in plant cell walls and play important roles in establishing wall architecture. The structures of hemicelluloses are determined by carbohydrate-active enzymes (CAZymes) that synthesize, integrate, and break down these polymers. Specifically, endo-glucanase 16 (EG16) enzymes, which are related to the well-known xyloglucan endotransglycosylase/hydrolase (XTH) gene products in Glycoside Hydrolase Family 16 (GH16), have been implicated in the degradation of the ß(1,4)-linked backbone of mixed-linkage ß(1,3);ß(1,4)-glucans (MLG) and xyloglucans. EG16 members are single-copy genes found in most plant clades but are absent from many eudicots, including the model plant Arabidopsis thaliana. Until recently, EG16 members had only been characterized in vitro, establishing their substrate specificity, protein structure, and phylogenetic history, but their biological function was unknown. Here we used a hybrid polar, Populus alba × Populus grandidentata (P39), as a model to examine EG16 expression, subcellular localization, and pheno- and chemotypes of EG16-downregulated P39 plants. Populus EG16 expression is strong in young tissues, but RNAi-mediated downregulation did not impact plant growth nor the fine structure of the hemicellulose xyloglucan, suggesting a restricted or currently unknown role in angiosperm physiology.

6.
Plant Physiol ; 192(1): 119-132, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36797772

RESUMEN

The role of glycoproteins as key cell surface molecules during development and stress is well established; yet, the relationship between their structural features and functional mechanisms is poorly defined. FASCICLIN-LIKE ARABINOGALACTAN PROTEINs (FLAs), which impact plant growth and development, are an excellent example of a glycoprotein family with a complex multidomain structure. FLAs combine globular fasciclin-like (FAS1) domains with regions that are intrinsically disordered and contain glycomotifs for directing the addition of O-linked arabinogalactan (AG) glycans. Additional posttranslational modifications on FLAs include N-linked glycans in the FAS1 domains, a cleaved signal peptide at the N terminus, and often a glycosylphosphatidylinositol (GPI) anchor signal sequence at the C terminus. The roles of glycosylation, the GPI anchor, and FAS1 domain functions in the polysaccharide-rich extracellular matrix of plants remain unclear, as do the relationships between them. In this study, we examined sequence-structure-function relationships of Arabidopsis (Arabidopsis thaliana) FLA11, demonstrated to have roles in secondary cell wall (SCW) development, by introducing domain mutations and functional specialization through domain swaps with FLA3 and FLA12. We identified FAS1 domains as essential for FLA function, differentiating FLA11/FLA12, with roles in SCW development, from FLA3, specific to flowers and involved in pollen development. The GPI anchor and AG glycosylation co-regulate the cell surface location and release of FLAs into cell walls. The AG glycomotif sequence closest to the GPI anchor (AG2) is a major feature differentiating FLA11 from FLA12. The results of our study show that the multidomain structure of different FLAs influences their subcellular location and biological functions during plant development.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Polisacáridos/metabolismo
7.
Chembiochem ; 24(9): e202300001, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36821718

RESUMEN

Chemically labile ester linkages can be introduced into lignin by incorporation of monolignol conjugates, which are synthesized in planta by acyltransferases that use a coenzyme A (CoA) thioester donor and a nucleophilic monolignol alcohol acceptor. The presence of these esters facilitates processing and aids in the valorization of renewable biomass feedstocks. However, the effectiveness of this strategy is potentially limited by the low steady-state levels of aromatic acid thioester donors in plants. As part of an effort to overcome this, aromatic acid CoA ligases involved in microbial aromatic degradation were identified and screened against a broad panel of substituted cinnamic and benzoic acids involved in plant lignification. Functional fingerprinting of this ligase library identified four robust, highly active enzymes capable of facile, rapid, and high-yield synthesis of aromatic acid CoA thioesters under mild aqueous reaction conditions mimicking in planta activity.


Asunto(s)
Coenzima A Ligasas , Ligasas , Coenzima A Ligasas/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Ésteres
8.
Plant Biotechnol J ; 21(1): 176-188, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36161690

RESUMEN

Ester-linked p-hydroxybenzoate occurs naturally in poplar lignin as pendent groups that can be released by mild alkaline hydrolysis. These 'clip-off' phenolics can be separated from biomass and upgraded into diverse high-value bioproducts. We introduced a bacterial chorismate pyruvate lyase gene into transgenic poplar trees with the aim of producing more p-hydroxybenzoate from chorismate, itself a metabolic precursor to lignin. By driving heterologous expression specifically in the plastids of cells undergoing secondary wall formation, this strategy achieved a 50% increase in cell-wall-bound p-hydroxybenzoate in mature wood and nearly 10 times more in developing xylem relative to control trees. Comparable amounts also remained as soluble p-hydroxybenzoate-containing xylem metabolites, pointing to even greater engineering potential. Mass spectrometry imaging showed that the elevated p-hydroxybenzoylation was largely restricted to the cell walls of fibres. Finally, transgenic lines outperformed control trees in assays of saccharification potential. This study highlights the biotech potential of cell-wall-bound phenolate esters and demonstrates the importance of substrate supply in lignin engineering.


Asunto(s)
Lignina , Populus , Lignina/metabolismo , Ingeniería Metabólica , Parabenos/análisis , Parabenos/metabolismo , Madera/metabolismo , Populus/genética , Populus/metabolismo , Pared Celular/metabolismo , Hidroxibenzoatos/análisis , Hidroxibenzoatos/metabolismo , Árboles/genética
9.
New Phytol ; 237(1): 251-264, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196006

RESUMEN

Ester-linked p-coumarate (pCA) is a hallmark feature of the secondary cell walls in commelinid monocot plants. It has been shown that pCA groups arise during lignin polymerisation from the participation of monolignol conjugates assembled by p-coumaroyl-CoA:monolignol transferase (PMT) enzymes, members of the BAHD superfamily of acyltransferases. Herein, we report that a eudicot species, kenaf (Hibiscus cannabinus), naturally contains p-coumaroylated lignin in the core tissues of the stems but not in the bast fibres. Moreover, we identified a novel acyltransferase, HcPMT, that shares <30% amino acid identity with known monocot PMT sequences. Recombinant HcPMT showed a preference in enzyme assays for p-coumaroyl-CoA and benzoyl-CoA as acyl donor substrates and sinapyl alcohol as an acyl acceptor. Heterologous expression of HcPMT in hybrid poplar trees led to the incorporation of pCA in lignin, but no improvement in the saccharification potential of the wood. This work illustrates the value in mining diverse plant taxa for new monolignol acyltransferases. Furthermore, the occurrence of pCA outside monocot lineages may represent another example of convergent evolution in lignin structure. This discovery expands textbook views on cell wall biochemistry and provides a new molecular tool for engineering the lignin of biomass feedstock plants.


Asunto(s)
Lignina , Populus , Lignina/metabolismo , Pared Celular/metabolismo , Aciltransferasas/metabolismo , Populus/metabolismo , Coenzima A/análisis , Coenzima A/metabolismo
10.
Front Plant Sci ; 13: 1062264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36570942

RESUMEN

Bioenergy sorghum hybrids are being developed with enhanced drought tolerance and high levels of stem sugars. Raffinose family oligosaccharides (RFOs) contribute to plant environmental stress tolerance, sugar storage, transport, and signaling. To better understand the role of RFOs in sorghum, genes involved in myo-inositol and RFO metabolism were identified and relative transcript abundance analyzed during development. Genes involved in RFO biosynthesis (SbMIPS1, SbInsPase, SbGolS1, SbRS) were more highly expressed in leaves compared to stems and roots, with peak expression early in the morning in leaves. SbGolS, SbRS, SbAGA1 and SbAGA2 were also expressed at high levels in the leaf collar and leaf sheath. In leaf blades, genes involved in myo-inositol biosynthesis (SbMIPS1, SbInsPase) were expressed in bundle sheath cells, whereas genes involved in galactinol and raffinose synthesis (SbGolS1, SbRS) were expressed in mesophyll cells. Furthermore, SbAGA1 and SbAGA2, genes that encode neutral-alkaline alpha-galactosidases that hydrolyze raffinose, were differentially expressed in minor vein bundle sheath cells and major vein and mid-rib vascular and xylem parenchyma. This suggests that raffinose synthesized from sucrose and galactinol in mesophyll cells diffuses into vascular bundles where hydrolysis releases sucrose for long distance phloem transport. Increased expression (>20-fold) of SbAGA1 and SbAGA2 in stem storage pith parenchyma of sweet sorghum between floral initiation and grain maturity, and higher expression in sweet sorghum compared to grain sorghum, indicates these genes may play a key role in non-structural carbohydrate accumulation in stems.

11.
Biotechnol Biofuels Bioprod ; 15(1): 145, 2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36567331

RESUMEN

BACKGROUND: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption. Several engineering strategies have been designed to reduce lignin or modify its monomeric composition. For example, expression of bacterial 3-dehydroshikimate dehydratase (QsuB) in poplar trees resulted in a reduction in lignin due to redirection of metabolic flux toward 3,4-dihydroxybenzoate at the expense of lignin. This reduction was accompanied with remarkable changes in the pools of aromatic compounds that accumulate in the biomass. RESULTS: The impact of these modifications on downstream biomass deconstruction and conversion into advanced bioproducts was evaluated in the current study. Using ionic liquid pretreatment followed by enzymatic saccharification, biomass from engineered trees released more glucose and xylose compared to wild-type control trees under optimum conditions. Fermentation of the resulting hydrolysates using Rhodosporidium toruloides strains engineered to produce α-bisabolene, epi-isozizaene, and fatty alcohols showed no negative impact on cell growth and yielded higher titers of bioproducts (as much as + 58%) in the case of QsuB transgenics trees. CONCLUSION: Our data show that low-recalcitrant poplar biomass obtained with the QsuB technology has the potential to improve the production of advanced bioproducts.

12.
Sci Rep ; 12(1): 17254, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241753

RESUMEN

Perennial shrub willow are increasingly being promoted in short-rotation coppice systems as biomass feedstocks, for phytoremediation applications, and for the diverse ecosystem services that can accrue. This renewed interest has led to widespread willow cultivation, particularly of non-native varieties. However, Canadian willow species have not been widely adopted and their inherent diversity has not yet been thoroughly investigated. In this study, 324 genotypes of Salix famelica and Salix eriocephala collected from 33 sites of origin were analyzed using 26,016 single nucleotide polymorphisms to reveal patterns of population structure and genetic diversity. Analyses by Bayesian methods and principal component analysis detected five main clusters that appeared to be largely shaped by geoclimatic variables including mean annual precipitation and the number of frost-free days. The overall observed (HO) and expected (HE) heterozygosity were 0.126 and 0.179, respectively. An analysis of molecular variance revealed that the highest genetic variation occurred within genotypes (69%), while 8% of the variation existed among clusters and 23% between genotypes within clusters. These findings provide new insights into the extent of genetic variation that exists within native shrub willow species which could be leveraged in pan-Canadian willow breeding programs.


Asunto(s)
Salix , Teorema de Bayes , Canadá , Ecosistema , Variación Genética , Fitomejoramiento , Salix/genética
13.
Front Plant Sci ; 13: 938083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937345

RESUMEN

The lignin found in the cell walls of poplar fibres is decorated with ester-linked p-hydroxybenzoate moieties that originate from the participation of acylated monolignols in lignin polymerisation. Although little is known about the biological implications of these cell-wall constituents, it has historically been postulated that acylated monolignols might promote lignification in syringyl lignin-rich species such as poplar. However, cell-wall-bound p-hydroxybenzoate groups were negatively correlated with syringyl units in a collection of 316 unrelated genotypes of black cottonwood (Populus trichocarpa). Based upon this observation, several alternative hypotheses on the occurrence of lignin acylation are presented.

14.
BMC Genomics ; 23(1): 536, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35870886

RESUMEN

BACKGROUND: Genomic prediction (GP) and genome-wide association (GWA) analyses are currently being employed to accelerate breeding cycles and to identify alleles or genomic regions of complex traits in forest trees species. Here, 1490 interior lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm) trees from four open-pollinated progeny trials were genotyped with 25,099 SNPs, and phenotyped for 15 growth, wood quality, pest resistance, drought tolerance, and defense chemical (monoterpenes) traits. The main objectives of this study were to: (1) identify genetic markers associated with these traits and determine their genetic architecture, and to compare the marker detected by single- (ST) and multiple-trait (MT) GWA models; (2) evaluate and compare the accuracy and control of bias of the genomic predictions for these traits underlying different ST and MT parametric and non-parametric GP methods. GWA, ST and MT analyses were compared using a linear transformation of genomic breeding values from the respective genomic best linear unbiased prediction (GBLUP) model. GP, ST and MT parametric and non-parametric (Reproducing Kernel Hilbert Spaces, RKHS) models were compared in terms of prediction accuracy (PA) and control of bias. RESULTS: MT-GWA analyses identified more significant associations than ST. Some SNPs showed potential pleiotropic effects. Averaging across traits, PA from the studied ST-GP models did not differ significantly from each other, with generally a slight superiority of the RKHS method. MT-GP models showed significantly higher PA (and lower bias) than the ST models, being generally the PA (bias) of the RKHS approach significantly higher (lower) than the GBLUP. CONCLUSIONS: The power of GWA and the accuracy of GP were improved when MT models were used in this lodgepole pine population. Given the number of GP and GWA models fitted and the traits assessed across four progeny trials, this work has produced the most comprehensive empirical genomic study across any lodgepole pine population to date.


Asunto(s)
Estudio de Asociación del Genoma Completo , Pinus , Cambio Climático , Genómica/métodos , Modelos Genéticos , Fenotipo , Pinus/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple , Árboles
15.
Integr Comp Biol ; 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35482591

RESUMEN

Seaweeds inhabiting wave-battered coastlines are generally flexible, bending with the waves to adopt more streamlined shapes and reduce drag. Coralline algae, however, are firmly calcified, existing largely as crusts that avoid drag altogether or as upright branched forms with uncalcified joints (genicula) that confer flexibility to otherwise rigid thalli. Upright corallines have evolved from crustose ancestors independently multiple times, and the repeated evolution of genicula has contributed to the ecological success of articulated corallines worldwide. Structure and development of genicula are significantly different across evolutionary lineages, and yet biomechanical performance is broadly similar. Because chemical composition plays a central role in both calcification and biomechanics, we explored evolutionary trends in cell wall chemistry across crustose and articulated taxa. We compared the carbohydrate content of genicula across convergently-evolved articulated species, as well as the carbohydrate content of calcified tissues from articulated and crustose species, to search for phylogenetic trends in cell wall chemistry during the repeated evolution of articulated taxa. We also analysed the carbohydrate content of one crustose coralline species that evolved from articulated ancestors, allowing us to examine trends in chemistry during this evolutionary reversal and loss of genicula. We found several key differences in carbohydrate content between calcified and uncalcified coralline tissues, though the significance of these differences in relation to the calcification process requires more investigation. Comparisons across a range of articulated and crustose species indicated that carbohydrate chemistry of calcified tissues was generally similar, regardless of morphology or phylogeny; conversely, chemical composition of genicular tissues was different across articulated lineages, suggesting that significantly different biochemical trajectories have led to remarkably similar biomechanical innovations.

16.
New Phytol ; 235(1): 234-246, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35377486

RESUMEN

Renewed interests in the development of bioenergy, biochemicals, and biomaterials have elicited new strategies for engineering the lignin of biomass feedstock plants. This study shows, for the first time, that 3,4-dihydroxybenzoate (DHB) is compatible with the radical coupling reactions that assemble polymeric lignin in plants. We introduced a bacterial 3-dehydroshikimate dehydratase into hybrid poplar (Populus alba × grandidentata) to divert carbon flux away from the shikimate pathway, which lies upstream of lignin biosynthesis. Transgenic poplar wood had up to 33% less lignin with p-hydroxyphenyl units comprising as much as 10% of the lignin. Mild alkaline hydrolysis of transgenic wood released fewer ester-linked p-hydroxybenzoate groups than control trees, and revealed the novel incorporation of cell-wall-bound DHB, as well as glycosides of 3,4-dihydroxybenzoic acid (DHBA). Two-dimensional nuclear magnetic resonance (2D-NMR) analysis uncovered DHBA-derived benzodioxane structures suggesting that DHB moieties were integrated into the lignin polymer backbone. In addition, up to 40% more glucose was released from transgenic wood following ionic liquid pretreatment and enzymatic hydrolysis. This work highlights the potential of diverting carbon flux from the shikimate pathway for lignin engineering and describes a new type of 'zip-lignin' derived from the incorporation of DHB into poplar lignin.


Asunto(s)
Lignina , Populus , Hidroxibenzoatos , Lignina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Madera/química
17.
PLoS One ; 17(3): e0264549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298481

RESUMEN

Tree improvement programs often focus on improving productivity-related traits; however, under present climate change scenarios, climate change-related (adaptive) traits should also be incorporated into such programs. Therefore, quantifying the genetic variation and correlations among productivity and adaptability traits, and the importance of genotype by environment interactions, including defense compounds involved in biotic and abiotic resistance, is essential for selecting parents for the production of resilient and sustainable forests. Here, we estimated quantitative genetic parameters for 15 growth, wood quality, drought resilience, and monoterpene traits for Picea glauca (Moench) Voss (white spruce). We sampled 1,540 trees from three open-pollinated progeny trials, genotyped with 467,224 SNP markers using genotyping-by-sequencing (GBS). We used the pedigree and SNP information to calculate, respectively, the average numerator and genomic relationship matrices, and univariate and multivariate individual-tree models to obtain estimates of (co)variance components. With few site-specific exceptions, all traits examined were under genetic control. Overall, higher heritability estimates were derived from the genomic- than their counterpart pedigree-based relationship matrix. Selection for height, generally, improved diameter and water use efficiency, but decreased wood density, microfibril angle, and drought resistance. Genome-based correlations between traits reaffirmed the pedigree-based correlations for most trait pairs. High and positive genetic correlations between sites were observed (average 0.68), except for those pairs involving the highest elevation, warmer, and moister site, specifically for growth and microfibril angle. These results illustrate the advantage of using genomic information jointly with productivity and adaptability traits, and defense compounds to enhance tree breeding selection for changing climate.


Asunto(s)
Picea , Genómica/métodos , Genotipo , Fenotipo , Picea/genética , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple
18.
Plant Cell ; 34(5): 2080-2095, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35167693

RESUMEN

Lignin, the second most abundant biopolymer, is a promising renewable energy source and chemical feedstock. A key element of lignin biosynthesis is unknown: how do lignin precursors (monolignols) get from inside the cell out to the cell wall where they are polymerized? Modeling indicates that monolignols can passively diffuse through lipid bilayers, but this has not been tested experimentally. We demonstrate significant monolignol diffusion occurs when laccases, which consume monolignols, are present on one side of the membrane. We hypothesize that lignin polymerization could deplete monomers in the wall, creating a concentration gradient driving monolignol diffusion. We developed a two-photon microscopy approach to visualize lignifying Arabidopsis thaliana root cells. Laccase mutants with reduced ability to form lignin polymer in the wall accumulated monolignols inside cells. In contrast, active transport inhibitors did not decrease lignin in the wall and scant intracellular phenolics were observed. Synthetic liposomes were engineered to encapsulate laccases, and monolignols crossed these pure lipid bilayers to form polymer within. A sink-driven diffusion mechanism explains why it has been difficult to identify genes encoding monolignol transporters and why the export of varied phenylpropanoids occurs without specificity. It also highlights an important role for cell wall oxidative enzymes in monolignol export.


Asunto(s)
Arabidopsis , Lignina , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Lacasa/genética , Lacasa/metabolismo , Lignina/metabolismo , Membrana Dobles de Lípidos/metabolismo , Polimerizacion
19.
Plant Physiol ; 188(2): 1014-1027, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34977949

RESUMEN

Poplar (Populus) lignin is naturally acylated with p-hydroxybenzoate ester moieties. However, the enzyme(s) involved in the biosynthesis of the monolignol-p-hydroxybenzoates have remained largely unknown. Here, we performed an in vitro screen of the Populus trichocarpa BAHD acyltransferase superfamily (116 genes) using a wheatgerm cell-free translation system and found five enzymes capable of producing monolignol-p-hydroxybenzoates. We then compared the transcript abundance of the five corresponding genes with p-hydroxybenzoate concentrations using naturally occurring unrelated genotypes of P. trichocarpa and revealed a positive correlation between the expression of p-hydroxybenzoyl-CoA monolig-nol transferase (pHBMT1, Potri.001G448000) and p-hydroxybenzoate levels. To test whether pHBMT1 is responsible for the biosynthesis of monolignol-p-hydroxybenzoates, we overexpressed pHBMT1 in hybrid poplar (Populus alba × P. grandidentata) (35S::pHBMT1 and C4H::pHBMT1). Using three complementary analytical methods, we showed that there was an increase in soluble monolignol-p-hydroxybenzoates and cell-wall-bound monolignol-p-hydroxybenzoates in the poplar transgenics. As these pendent groups are ester-linked, saponification releases p-hydroxybenzoate, a precursor to parabens that are used in pharmaceuticals and cosmetics. This identified gene could therefore be used to engineer lignocellulosic biomass with increased value for emerging biorefinery strategies.


Asunto(s)
Acilación/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Lignina/biosíntesis , Lignina/genética , Populus/genética , Populus/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Plantas Modificadas Genéticamente
20.
Plant Physiol ; 188(2): 984-996, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34718804

RESUMEN

Lignin, a polyphenolic polymer, is a major chemical constituent of the cell walls of terrestrial plants. The biosynthesis of lignin is a highly plastic process, as highlighted by an increasing number of noncanonical monomers that have been successfully identified in an array of plants. Here, we engineered hybrid poplar (Populus alba x grandidentata) to express chalcone synthase 3 (MdCHS3) derived from apple (Malus domestica) in lignifying xylem. Transgenic trees displayed an accumulation of the flavonoid naringenin in xylem methanolic extracts not inherently observed in wild-type trees. Nuclear magnetic resonance analysis revealed the presence of naringenin in the extract-free, cellulase-treated xylem lignin of MdCHS3-poplar, indicating the incorporation of this flavonoid-derived compound into poplar secondary cell wall lignins. The transgenic trees also displayed lower total cell wall lignin content and increased cell wall carbohydrate content and performed significantly better in limited saccharification assays than their wild-type counterparts.


Asunto(s)
Aciltransferasas/genética , Aciltransferasas/metabolismo , Flavanonas/metabolismo , Lignina/biosíntesis , Lignina/genética , Populus/genética , Populus/metabolismo , Xilema/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Flavanonas/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Malus/genética , Malus/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Xilema/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...